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First-order versus second-order interface localization transition of thin Ising films
with competing walls
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From extensive Monte Carlo simulations of a lattice gas model we present evidence that the order of the
gas-liquid transition of a fluid confined between “competing” walls can change from second to first order
when the thicknesB of the thin film is varied. This situation typically arises when the wetting transition of the
corresponding semi-infinite system is first order, and thus permits the study of a tricritical interface-
localization-delocalization transition via control of the film thickng§1063-651X98)07609-0

PACS numbes): 68.45.Gd, 64.60.Fr, 64.60.Kw, 68.35.Rh

Thin fluid films which are adsorbed on substrates or constabilizes a coexistence between two phases of opposite sign
fined in slitike capillaries pose challenging fundamentalof the order parameter, with a freely fluctuating interface in
problems due to a subtle interplay between finite size anthe middle of the film, the mean order parameter of the film
surface phenomena. The recognition of this situation has repeing zero. However, there exists a phase transitidn @)
sulted in great activity which has attempted to elucidate varif7-10,12—-1% such that forT<T.(D), the interface be-

ous features of these phenomé¢tia17]. Of particular inter-  comes localized at one of the walls, and then the average
est is the case where the two surfaces of the fluid film favog,qer parameter of the film is nonzero. Sintg(D— =)

different phases: e.g., in the case of a fluid near a gas-liquid,
coexistence in the bulk, one wall favors high-density liquid
and the other wall prefers low-density gas. Similarly, for a
binary mixture (A,B) undergoing phase separation in the. N B
bulk, one surface favors africh phase, the other favors a interest[7-10,12-14 Most work, however, addresses the

B-rich phase. In the latter case, a situation equivalent to suciﬁSue of critical wetting for the cor_r(_asp(_)nding_ S(_ami-_infinite
“competing walls” is also often realized when the mixture is geometry{18,19, and then the transition in a thin film is also

on a substrate and the other surface is “fréee., against air Second orde(8,10,12-14 Even with short-range forces,
[16]). one can obtain pronounced first-order wetting transitions in
The generic model for the study of this problem is actu_semi-infir?ite. gepmetry 'by choosing a suitable enhgncement
ally the Ising (or lattice gay model, where the local order ©f the pairwise interaction near the wlig] such as in Eq.
parameter of the corresponding phase transition is a psetl)- A mean field theory9] which treated the corresponding
dospin variables;= =1 at lattice sitei, and the competing thin film case suggested that first-order interface localization
surfaces at lattice planes=1 andn=D (we henceforth take transitions would be found as the thickness varied.
the lattice spacing as our unit of lengtare described by It is well known, however, that in real fluids the long
surface fields of opposite sighl;=—Hp. Assuming near- range of the van der Waals forces exerted by walls on the
est neighbor pairwise interactiodsn the bulk andJ, in the ~ fluid molecules has the consequence that the wetting transi-

surface planes, we find that the Hamiltonian for this model igion is almost always first ord¢6] in a semi-infinite geom-
etry. Thus it is likely that under many circumstances the

T,, rather thanT.,, unlike the more familiar situation of
noncompeting walls where “capillary condensatiof$,11]
occurs, this unconventional phase transition has evoked great

(b) (s) interface-localization-delocalization transition in thin films is
H=-J3D sisj—Jsz sis;—Hy > s—Hp X s, first order as well. _ o
() (.5 (ien=1) (ien=D) In the present paper we describe an examination of such a

(D first-order transition in a thin film by Monte Carlo simula-
) ) ) ~tions, thus going beyond mean field the¢®y. In the frame-
where the sunk;j, runs once over all pairs of neighboring work of our simplified model, Eq(1), this can be done by
spins where at least one siteristin a surface plane, while choosing a sufficient enhancement of the exchange interac-
the sumEEf)j> is restricted to pairs with both sites in one of tion Jg in the surface planes relative to the b{ll8]. For the
the two surfaces. The total magnetizatibh of the film  semi-infinite geometry, it was estimated that first-order wet-
serves as the order parameter for the transition; above thég transitions occur for the model of Edql) if Jg/J
transition the interface is in the middle so the mean value of>1.25 for an inverse temperature &kzT=0.25[18].
M is zero, but below the transition the interface is near to one We now present the first results for E@L) in the case
of the walls so the magnetization becomes strongly nonzeravhere J;>J, confining ourselves to the regiod,=1.3,
For temperatures below the critical temperafliggin the  where the wetting transition at the surface of a semi-infinite
bulk, but sufficiently above the wetting transitidn, of the  system would be very strongly first order atkgT=0.25.
corresponding semi-infinite systend {~=), this geometry We show that in a thin film the tricritical point, i.e., the ratio
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Jst/J where the transition changes from second order to first 06 ¢
order, is enhanced. This also implies that at a fixed ratio of
Js/J we may have a second-order transition for thin films
and a first-order transition for thick films; i.e., one can
change the order of the interface-localization-delocalization
transition by changing the thickness of the film and encoun-
ter a tricritical point at fixedlg/J at some critical thickness
D;.

We carry out single-spin-flip Monte Carlo simulations on
systems with a. X L X D geometry with periodic boundary 02 | L=64
conditions in the directions parallel to the two< L surfaces. 1296
L varies fromL=16 to 96, primarily for very thin films D
=4,6,8) since for thick films, slow interfacial fluctuations

04| L=t6
L=24
L=32
L=48

<|M|>

make it impossible to attain the desired statistical accuracy. 0%%0 E 0.0

In our previous work on second-order interface localization
transitions[13,14] these small thicknesses were found to be (@) T
5]

0.0 ' : : : :
0239 0240 0241 0242 0243 0.244

sufficient to verify the nontrivial fluctuation phenomena pre-
dicted by recent theorief20]. For each set of parameters 0.75 ¢
(L,D,Jy) six independent simulations were performed, each
ranging from 2<10° Monte Carlo stepsMCS) for the
smaller systems to:810° MCS for L=64 and 4x 10° MCS
for L=96. The results were then analyzed by histogram re-
weighting [21] to produce the smooth curves shown. Error 0.50
bars are determined by the variation between the six inde- L=16
pendent run$22]. The appropriate choice of coupling con- L=24
stantsK =J/kgT at which these runs were made was deter-
mined from preliminary shorter runs wher& was o025 | 2
systematically varied. |
Figures 1 and 2 show typical “raw data” for the average
order parametef{M|) and the logarithmic derivative dfM|)
of these thin films. Fods/J=1.3 andD =6 [Fig. 1(a)] the tfgg
variation of the order parameter neldg=J/kgT; is very 0.00 ——— : : ' :
smooth and strongly rounded by finite size: The data have 0239 0240 0241 0242 0243 0244
exactly the same features as corresponding datalftd (b) ke
=1 [13,14 and all related evidencg3] (e.g., profiles of FIG. 1. Order parametef]M|) plotted vs J/kgT for D=6,

order parameter, energy, etc., across the)fimpport the  j_;3=13(a) andJ,/3=1.5(b), respectively, for linear dimensions
conclusion that the transition for this thickness is still second_ =16, 24, 32, 48, 64, and 96. Arrows show the locatioTgfD)

order (although it is first order folD—< [18]). For Js/J  obtained from extrapolations of peak positions, shown in the insets,
=1.5, however, the steep variation{{¥|) with K [Fig. 1(b)] for specific heaflower data setand logarithmic derivativéupper
indicates that this is already a rounded first-order transitiondata setvs L2 (first-order caseor L~ (second-order cajere-
This interpretation is supported by the positions of thespectively.

maxima of the specific he&, and logarithmic derivative of

<|M|>

L=48

0.2395 :
0.000 0.001
2

U

(M, the second-order case we hgé, (L) —K.]<L ! as found
previously[13,14. Note that at a second-order transition the
gIn((IM[)) 1 K|M]) extrapolation should vary ds™**, wherev=1 for the(two-
K {IM]y oK dimensional Ising-like delocalizatigriransition.

There are several other quite convincing pieces of evi-
both of which have characteristic divergencies at the transidence for the change in the order of the transition. Lee and
tion and which are plotted in the insets of Figé&)land Xb). Kosterlitz [26] have introduced a method to determine the
By varying J;/J we have, thus, passed through a tricritical order of a phase transition by studying the scaling behavior
point. of the free energy barrier. Fadl,/J=1.45 the energy distri-

Another and more interesting way to cross the tricriticalbution forD =4 shows only a single peak for all lattice sizes,
point is to vary the thicknesB while holding the surface thus clearly demonstrating that the transition is second order.
coupling constant(This approach is more relevant because itFor D =6, however, the distribution is double peaked and the
corresponds more closely to the situation that can be realize@sulting free energy barrier first grows with increasing
in an experiment.The data for the logarithmic derivative of before beginning to decreadsee Fig. 3 With a thicker
[M|, shown in Fig. 2a) (for D=4) and Fig. 2b) (for D film, D=8 the free energy barrier rapidly increases with
=8) have maxima which grow systematically and rapidlyand indicates that the transition is already strongly first order.
with increasingL. The positions of the peaks are compatible The correlation time becomes quite long in this case because
with an extrapolatior K (L) —K.]xL 2 as expected from the time needed for the system to “tunnel” back and forth
finite-size scaling for first-order transitiofig4,25 while in  between the two peaks is of the order off 1CS. Thus
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l FIG. 4. Plot of the maximunm d In({{M|))/dK]max Vs L for D
1000 | =6, J;/J=1.3 (lower curve, J,/J=1.45 (upper curvg andJg/J
=1.5(insed. The theoretical behavior of second-order transition in
« the two-dimensional Ising universality classl() and for a first-
2 750 ¢t order transition in the inset{L?) is indicated by the solid lines.
A
=
£ 500/ of the specific heat, susceptibility, as well as the logarithmic
° derivative of|M| with L. The maximum value of the loga-
250 rithmic derivative of|M| is plotted versus lattice size for
D=6 and different values ads/J in Fig. 4. ForJs/J=1.3
(lower curve andJ./J=1.45(upper curvethe variation for

8.243 0244 0245 00246 0247 0248 sufficie_ntly I:_;lrgel__ is linear, implying_ 14=1, but forJg/J
() Ik, T =1.5(inse} it varies quadratically with. as expected for a
first-order transition. We plan to give a more detailed discus-
FIG. 2. [9 In((M[))/K]max plotted vsJ/kgT for Js/J=1.45,D  sjon of this crossover behavior elsewh§2a].
=4 (8 andD =8 (b). Curves shown itta) are for linear dimensions |5 conclusion, we have presented evidence that in thin
L:16'| Zi'f_sz’ %8’ Gr?éu_angz 96. Ig‘ﬂ’:g’ the_IFLansnéon ('js hso Ising films one can change the order of the transition from
strongly of first order thal > 32 could not be equilibrated and these ¢ 14 first order by increasing the thickness, keeping the
data are omitted ib). Arrows show the location of ;(D) obtained f fields and exchan linas near the wall constant
from an extrapolation of peak positions. surtace Tields and exchange C.Ou.p. gs .ea € wa .Co stant.
The occurrence of such a tricritical point can be inferred
from the mean field treatment of Swift, Owczarek, and Inde-

even runs of & 10° MCS are insufficient to give robust . : X
: . . keu[9], but our work provides evidence that this new type of
estimates for the free energy barrier, and six such runs were

averaged together before the result became reliable. Add}[icritical point persists beyond mean field theory. The critl-

tional strong evidence for the change of the order of thecal behavior of this special tricritical point still remains to be
transition comes from a study of the variation of the maximanvestigated 23]. It is also interesting to ask which features
of our results will carry over to real systems. For liquid-gas

transitions, one expects that the van der Waals forces imply
first-order wetting[5], and it is not clear whether second-
order interface localization transitions become possible in a
thin film geometry. On the other hand, for “symmetrical”
binary polymer mixtures it is conceivable that the difference
between the van der Waals forces of the two species is very
small, and an effectively short-range interaction dominates
[16]. Recent experiments on interfaces in confined geometry
are consistent with such a picture, but experimental evidence
for an interface localization transition is still lacking.
Clearly, more experiments on related systems are urgently
needed to resolve these issues.

In AF

0 20 40 60 80 100
L

This research was supported in part by the NSF under
Grant No. DMR-9405018, the DFG under Grant No.
SFB262/D1, and NATO under Grant No. CRG921202. We

FIG. 3. Free energy barrier height \sfor J;/J=1.45 andD are grateful to A. O. Parry, R. Evans, and J. Klein for stimu-
=8 (top curve, D=6 (bottom curve. lating discussions.



3356 ALAN M. FERRENBERG, D. P. LANDAU, AND K. BINDER PRE 58

[1] Fluid Interfacial Phenomeneaedited by C. A. CroxtoriWiley, [15] Y. Rouault, J. Baschnagel, and K. Binder, J. Stat. PiBgs.

New York, 1986. 1009(1995.

[2] Liquids at Interfacesedited by J. Charvolin, J. F. Joanny, and [16] T. Kerle, J. Klein, and K. Binder, Phys. Rev. Le®7, 1318
J. Zinn-Justin(North-Holland, Amsterdam, 1990 (1998.

[3] Physics of Polymer Surfaces and Interfacedited by I. C.  [17] A. Werner, F. Schmid, K. Binder, and M. Mer, J. Chem.
SanchezButterworth-Heinemann, Boston, 1992 Phys.107, 8175(1997.

[18] K. Binder and D. P. Landau, Phys. Rev3B, 1745(1988; K.
Binder, D. P. Landau, and S. Wanslebehid. 40, 6971
(1989.

[19] It has been suggest¢M. E. Fisher and A. J. Jin, Phys. Rev.
Lett. 69, 792 (1992] that the wetting transition of the Ising
model is never second order but actually weakly first order for
Js=J. If this is true, it would only affect the behavior ex-
tremely close tdl.(D), a region that is not accessible here.

[4] K. Binder, in Phase Transitions and Critical Phenomereal-
ited by C. Domb and J. L. LebowitzAcademic, London,
1983, Vol. 8, p. 1.

[5] S. Dietrich, inPhase Transitions and Critical Phenomeeal-
ited by C. Domb and J. L. LebowitzAcademic, London,
1988, Vol. 11, p. 1.

[6] H. Nakanishi and M. E. Fisher, J. Chem. Phy®8, 3279

(1983. ) [20] C. J. Boulter and A. O. Parry, Phys. Rev. Lef4, 3403
[7] E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, Surf. (1995; Physica A218 109 (1995; A. O. Parry and C. J
Sci. 223 157(1989. Boulter, ibid. 218 77 (1995.
[8] A. O. Parry and R. Evans, Phys. Rev. L&, 439(1990. [21] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. 6.
[9] M. R. Swift, A. L. Owczarek, and J. O. Indekeu, Europhys. 2635(1988; 63, 1195(1989.
Lett. 14, 475(1992). [22] A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Phys.
[10] A. O. Parry and R. Evans, Physical®1, 250(1992. Rev. E51, 5092 (1995.

[11] K. Binder and D. P. Landau, J. Chem. Ph98, 1444(1992.  [23] D. P. Landau, A. M. Ferrenberg, and K. Bindenpublishel
[12] K. Binder, A. M. Ferrenberg, and D. P. Landau, Ber. Bunsen-[24] See K. Binder, Rep. Prog. Phy80, 487 (1997, and references

ges. Phys. Chen®8, 340(1994. therein.
[13] K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev.[25] D. P. LandauFinite Size Scaling and Numerical Simulations
Lett. 74, 298 (1999; Phys. Rev. B51, 2823(1995. of Statistical Systemedited by V. Privmar{World Scientific,

[14] K. Binder, R. Evans, D. P. Landau, and A. M. Ferrenberg, Singapore, 1990
Phys. Rev. E53, 5023(1996. [26] J. Lee and J. M. Kosterlitz, Phys. Rev. Ledb, 137 (1990.



