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First-order versus second-order interface localization transition of thin Ising films
with competing walls
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From extensive Monte Carlo simulations of a lattice gas model we present evidence that the order of the
gas-liquid transition of a fluid confined between ‘‘competing’’ walls can change from second to first order
when the thicknessD of the thin film is varied. This situation typically arises when the wetting transition of the
corresponding semi-infinite system is first order, and thus permits the study of a tricritical interface-
localization-delocalization transition via control of the film thickness.@S1063-651X~98!07609-0#

PACS number~s!: 68.45.Gd, 64.60.Fr, 64.60.Kw, 68.35.Rh
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Thin fluid films which are adsorbed on substrates or c
fined in slitlike capillaries pose challenging fundamen
problems due to a subtle interplay between finite size
surface phenomena. The recognition of this situation has
sulted in great activity which has attempted to elucidate v
ous features of these phenomena@1–17#. Of particular inter-
est is the case where the two surfaces of the fluid film fa
different phases: e.g., in the case of a fluid near a gas-liq
coexistence in the bulk, one wall favors high-density liqu
and the other wall prefers low-density gas. Similarly, for
binary mixture ~A,B! undergoing phase separation in t
bulk, one surface favors anA-rich phase, the other favors
B-rich phase. In the latter case, a situation equivalent to s
‘‘competing walls’’ is also often realized when the mixture
on a substrate and the other surface is ‘‘free’’~i.e., against air
@16#!.

The generic model for the study of this problem is ac
ally the Ising ~or lattice gas! model, where the local orde
parameter of the corresponding phase transition is a p
dospin variablesi561 at lattice sitei, and the competing
surfaces at lattice planesn51 andn5D ~we henceforth take
the lattice spacing as our unit of length! are described by
surface fields of opposite sign,H152HD . Assuming near-
est neighbor pairwise interactionsJ in the bulk andJs in the
surface planes, we find that the Hamiltonian for this mode

H52J(
^ i , j &

~b!

sisj2Js(
^ i , j &

~s!

sisj2H1 (
^ i Pn51&

si2HD (
^ i Pn5D&

si ,

~1!

where the sum(^ i , j &
(b) runs once over all pairs of neighborin

spins where at least one site isnot in a surface plane, while
the sum(^ i , j &

(s) is restricted to pairs with both sites in one
the two surfaces. The total magnetizationM of the film
serves as the order parameter for the transition; above
transition the interface is in the middle so the mean value
M is zero, but below the transition the interface is near to o
of the walls so the magnetization becomes strongly nonz

For temperatures below the critical temperatureTcb in the
bulk, but sufficiently above the wetting transitionTw of the
corresponding semi-infinite system (D→`), this geometry
PRE 581063-651X/98/58~3!/3353~4!/$15.00
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stabilizes a coexistence between two phases of opposite
of the order parameter, with a freely fluctuating interface
the middle of the film, the mean order parameter of the fi
being zero. However, there exists a phase transition atTc(D)
@7–10,12–14# such that forT,Tc(D), the interface be-
comes localized at one of the walls, and then the aver
order parameter of the film is nonzero. SinceTc(D→`)
→Tw rather thanTcb , unlike the more familiar situation o
noncompeting walls where ‘‘capillary condensation’’@6,11#
occurs, this unconventional phase transition has evoked g
interest @7–10,12–14#. Most work, however, addresses th
issue of critical wetting for the corresponding semi-infin
geometry@18,19#, and then the transition in a thin film is als
second order@8,10,12–14#. Even with short-range forces
one can obtain pronounced first-order wetting transitions
semi-infinite geometry by choosing a suitable enhancem
of the pairwise interaction near the wall@18# such as in Eq.
~1!. A mean field theory@9# which treated the correspondin
thin film case suggested that first-order interface localizat
transitions would be found as the thickness varied.

It is well known, however, that in real fluids the lon
range of the van der Waals forces exerted by walls on
fluid molecules has the consequence that the wetting tra
tion is almost always first order@5# in a semi-infinite geom-
etry. Thus it is likely that under many circumstances t
interface-localization-delocalization transition in thin films
first order as well.

In the present paper we describe an examination of su
first-order transition in a thin film by Monte Carlo simula
tions, thus going beyond mean field theory@9#. In the frame-
work of our simplified model, Eq.~1!, this can be done by
choosing a sufficient enhancement of the exchange inte
tion Js in the surface planes relative to the bulk@18#. For the
semi-infinite geometry, it was estimated that first-order w
ting transitions occur for the model of Eq.~1! if Js /J
.1.25 for an inverse temperature ofJ/kBT50.25 @18#.

We now present the first results for Eq.~1! in the case
where Js.J, confining ourselves to the regionJs>1.3,
where the wetting transition at the surface of a semi-infin
system would be very strongly first order atJ/kBT50.25.
We show that in a thin film the tricritical point, i.e., the rat
3353 © 1998 The American Physical Society
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Jst /J where the transition changes from second order to
order, is enhanced. This also implies that at a fixed ratio
Js /J we may have a second-order transition for thin film
and a first-order transition for thick films; i.e., one ca
change the order of the interface-localization-delocalizat
transition by changing the thickness of the film and enco
ter a tricritical point at fixedJs /J at some critical thickness
Dt .

We carry out single-spin-flip Monte Carlo simulations o
systems with anL3L3D geometry with periodic boundar
conditions in the directions parallel to the twoL3L surfaces.
L varies fromL516 to 96, primarily for very thin films (D
54,6,8) since for thick films, slow interfacial fluctuation
make it impossible to attain the desired statistical accura
In our previous work on second-order interface localizat
transitions@13,14# these small thicknesses were found to
sufficient to verify the nontrivial fluctuation phenomena pr
dicted by recent theories@20#. For each set of paramete
(L,D,Js) six independent simulations were performed, ea
ranging from 23106 Monte Carlo steps~MCS! for the
smaller systems to 33106 MCS for L564 and 43106 MCS
for L596. The results were then analyzed by histogram
weighting @21# to produce the smooth curves shown. Err
bars are determined by the variation between the six in
pendent runs@22#. The appropriate choice of coupling con
stantsK5J/kBT at which these runs were made was det
mined from preliminary shorter runs whereK was
systematically varied.

Figures 1 and 2 show typical ‘‘raw data’’ for the avera
order parameter̂uMu& and the logarithmic derivative of^uMu&
of these thin films. ForJs /J51.3 andD56 @Fig. 1~a!# the
variation of the order parameter nearKc5J/kBTc is very
smooth and strongly rounded by finite size: The data h
exactly the same features as corresponding data forJs /J
51 @13,14# and all related evidence@23# ~e.g., profiles of
order parameter, energy, etc., across the film! support the
conclusion that the transition for this thickness is still seco
order ~although it is first order forD→` @18#!. For Js /J
51.5, however, the steep variation of^uMu& with K @Fig. 1~b!#
indicates that this is already a rounded first-order transit
This interpretation is supported by the positions of t
maxima of the specific heatC, and logarithmic derivative of
^uMu&,

] ln~^uM u&!

]K
5

1

^uM u&
]^uM u&

]K
,

both of which have characteristic divergencies at the tra
tion and which are plotted in the insets of Figs. 1~a! and 1~b!.
By varying Js /J we have, thus, passed through a tricritic
point.

Another and more interesting way to cross the tricritic
point is to vary the thicknessD while holding the surface
coupling constant.~This approach is more relevant because
corresponds more closely to the situation that can be real
in an experiment.! The data for the logarithmic derivative o
uMu, shown in Fig. 2~a! ~for D54) and Fig. 2~b! ~for D
58) have maxima which grow systematically and rapid
with increasingL. The positions of the peaks are compatib
with an extrapolation@Kmax(L)2Kc#}L22 as expected from
finite-size scaling for first-order transitions@24,25# while in
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the second-order case we have@Kmax(L)2Kc#}L21 as found
previously@13,14#. Note that at a second-order transition t
extrapolation should vary asL21/n, wheren51 for the~two-
dimensional Ising-like delocalization! transition.

There are several other quite convincing pieces of e
dence for the change in the order of the transition. Lee
Kosterlitz @26# have introduced a method to determine t
order of a phase transition by studying the scaling beha
of the free energy barrier. ForJs /J51.45 the energy distri-
bution forD54 shows only a single peak for all lattice size
thus clearly demonstrating that the transition is second or
For D56, however, the distribution is double peaked and
resulting free energy barrier first grows with increasingL
before beginning to decrease~see Fig. 3!. With a thicker
film, D58 the free energy barrier rapidly increases withL
and indicates that the transition is already strongly first ord
The correlation time becomes quite long in this case beca
the time needed for the system to ‘‘tunnel’’ back and for
between the two peaks is of the order of 106 MCS. Thus

FIG. 1. Order parameter̂uMu& plotted vs J/kBT for D56,
Js /J51.3 ~a! andJs /J51.5 ~b!, respectively, for linear dimension
L516, 24, 32, 48, 64, and 96. Arrows show the location ofTc(D)
obtained from extrapolations of peak positions, shown in the ins
for specific heat~lower data set! and logarithmic derivative~upper
data set! vs L22 ~first-order case! or L21 ~second-order case!, re-
spectively.
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even runs of 63106 MCS are insufficient to give robus
estimates for the free energy barrier, and six such runs w
averaged together before the result became reliable. A
tional strong evidence for the change of the order of
transition comes from a study of the variation of the maxi

FIG. 2. @] ln(^uMu&)/]K#max plotted vsJ/kBT for Js /J51.45,D
54 ~a! andD58 ~b!. Curves shown in~a! are for linear dimensions
L516, 24, 32, 48, 64, and 96. ForD58, the transition is so
strongly of first order thatL.32 could not be equilibrated and thes
data are omitted in~b!. Arrows show the location ofTc(D) obtained
from an extrapolation of peak positions.

FIG. 3. Free energy barrier height vsL for Js /J51.45 andD
58 ~top curve!, D56 ~bottom curve!.
re
i-

e
a

of the specific heat, susceptibility, as well as the logarithm
derivative of uMu with L. The maximum value of the loga
rithmic derivative ofuMu is plotted versus lattice sizeL for
D56 and different values ofJs /J in Fig. 4. ForJs /J51.3
~lower curve! andJs /J51.45~upper curve! the variation for
sufficiently largeL is linear, implying 1/n51, but for Js /J
51.5 ~inset! it varies quadratically withL as expected for a
first-order transition. We plan to give a more detailed disc
sion of this crossover behavior elsewhere@23#.

In conclusion, we have presented evidence that in t
Ising films one can change the order of the transition fr
second to first order by increasing the thickness, keeping
surface fields and exchange couplings near the wall cons
The occurrence of such a tricritical point can be inferr
from the mean field treatment of Swift, Owczarek, and Ind
keu@9#, but our work provides evidence that this new type
tricritical point persists beyond mean field theory. The cr
cal behavior of this special tricritical point still remains to b
investigated@23#. It is also interesting to ask which feature
of our results will carry over to real systems. For liquid-g
transitions, one expects that the van der Waals forces im
first-order wetting@5#, and it is not clear whether second
order interface localization transitions become possible i
thin film geometry. On the other hand, for ‘‘symmetrical
binary polymer mixtures it is conceivable that the differen
between the van der Waals forces of the two species is v
small, and an effectively short-range interaction domina
@16#. Recent experiments on interfaces in confined geom
are consistent with such a picture, but experimental evide
for an interface localization transition is still lacking
Clearly, more experiments on related systems are urge
needed to resolve these issues.

This research was supported in part by the NSF un
Grant No. DMR-9405018, the DFG under Grant N
SFB262/D1, and NATO under Grant No. CRG921202. W
are grateful to A. O. Parry, R. Evans, and J. Klein for stim
lating discussions.

FIG. 4. Plot of the maximum@] ln(^uMu&)/]K#max vs L for D
56, Js /J51.3 ~lower curve!, Js /J51.45 ~upper curve!, andJs /J
51.5 ~inset!. The theoretical behavior of second-order transition
the two-dimensional Ising universality class (}L) and for a first-
order transition in the inset (}L2) is indicated by the solid lines.
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